GE Healthcare

Amersham
Hybond-N+

Product Booklet

Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPN82B</td>
<td>82 mm diam, 50 discs</td>
</tr>
<tr>
<td>RPN87B</td>
<td>87 mm diam, 50 discs</td>
</tr>
<tr>
<td>RPN132B</td>
<td>132 mm diam, 50 discs</td>
</tr>
<tr>
<td>RPN137B</td>
<td>137 mm diam, 50 discs</td>
</tr>
<tr>
<td>RPN1576B</td>
<td>11.5 x 7.3 cm, 50 sheets</td>
</tr>
<tr>
<td>RPN119B</td>
<td>11.9 x 7.8 cm, 50 sheets</td>
</tr>
<tr>
<td>RPN225B</td>
<td>22.5 x 22.5 cm, 50 sheets</td>
</tr>
<tr>
<td>RPN1210B</td>
<td>12 x 10 cm, 20 sheets</td>
</tr>
<tr>
<td>RPN1510B</td>
<td>15 x 10 cm, 20 sheets</td>
</tr>
<tr>
<td>RPN1520B</td>
<td>15 x 20 cm, 10 sheets</td>
</tr>
<tr>
<td>RPN2020B</td>
<td>20 x 20 cm, 10 sheets</td>
</tr>
<tr>
<td>RPN2222B</td>
<td>22.2 x 22.2 cm, 10 sheets</td>
</tr>
<tr>
<td>RPN3050B</td>
<td>30 x 50 cm, 5 sheets</td>
</tr>
<tr>
<td>RPN2250B</td>
<td>22.2 x 22.2 cm, 50 sheets</td>
</tr>
<tr>
<td>RPN203B</td>
<td>20 cm x 3 m, 1 roll</td>
</tr>
<tr>
<td>RPN301B</td>
<td>30 cm x 3 m, 1 roll</td>
</tr>
<tr>
<td>RPN1782B</td>
<td>82 mm diam, 50 gridded discs</td>
</tr>
<tr>
<td>RPN1787B</td>
<td>87 mm diam, 50 gridded discs</td>
</tr>
<tr>
<td>RPN1732B</td>
<td>132 mm diam, 50 gridded discs</td>
</tr>
<tr>
<td>RPN1737B</td>
<td>137 mm diam, 50 gridded discs</td>
</tr>
</tbody>
</table>
Page finder

1. Legal 3
2. Handling 4
 2.1. Safety warnings and precautions 4
 2.2. Storage conditions 4
 2.3. Stability 4
3. Components 6
 3.1. Main components 6
 3.2. Critical parameters 6
 3.3. Other materials required 7
4. Description 8
 4.1. Quality control 8
 4.2. Solutions 9
5. Protocols 13
 5.1. Protocol for capillary blotting 13
 5.2. Southern blotting - neutral transfer gel treatment protocol 16
 5.3. Northern blotting - gel preparation and treatment 17
 5.4. Colony and plaque lifts 19
 5.5. Protocol for dot blotting (manual) 23
 5.6. Hybridization in bags and boxes 25
 5.7. Hybridization in tubes 30
 5.8. Stripping protocol - hot SDS procedure 35
6. Additional information 36
 6.1. Determination of the optimum UV crosslinking conditions using a UV transilluminator 36
 6.2. Recommended applications for blotting membranes 38
7. References 39
8. Related products 40
1. Legal

GE and GE monogram are trademarks of General Electric Company.
AlkPhos Direct, ECF, ECL, Ficoll, Gene Images, Hybond, Hyperfilm,
Megaprime, Rapid-hyb, Ready-To-Go, Rediprime, Redivue, Storm and
Typhoon are trademarks of GE Healthcare companies.
Alkphos Direct labelling reagents are covered by European patent
number 120376B1 and sold under licence from European Molecular
Biology Laboratory.
ECF substrate is manufactured for GE Healthcare by JBL Scientific
Inc and is sold under licence from JBL Scientific Inc.
Gene Images hybridization buffer is covered by US patent number
5512436 and foreign equivalents.
AnalaR is a trademark of BDH Laboratory Supplies.
Gilson and Pipetman are trademarks of Gilson Inc.
SaranWrap is a trademark of Dow Chemical Company.
Trizma is a trademark of Sigma-Aldrich.
© 2006 General Electric Company – All rights reserved.
GE Healthcare reserves the right, subject to any regulatory approval,
to make changes in specifications and features shown herein, or
discontinue the product described at any time without notice or
obligation.
Contact your GE Healthcare representative for the most current
information and a copy of the terms and conditions.
http://www.gehealthcare.com/lifesciences
GE Healthcare UK Limited
Amersham Place Little Chalfont
Buckinghamshire HP7 9NA UK
2. Handling

2.1. Safety warnings and precautions

Warning: For research use only.

Not recommended or intended for diagnosis of disease in humans or animals. Do not use internally or externally in humans or animals.

We recommend that this product is handled only by those persons who have been trained in laboratory techniques and that it is used in accordance with the principles of good laboratory practice. All chemicals should be considered as potentially hazardous. It is advisable when handling chemical reagents to wear suitable protective clothing, such as laboratory overalls, safety glasses and gloves. Care should be taken to avoid contact with skin or eyes. In case of contact with skin or eyes wash immediately with water.

Note that the procedure requires the use of:
- Sodium Dodecyl Sulfate: irritant
- Formaldehyde: toxic substance
- Formamide: toxic substance
- Ethidium Bromide: mutagenic substance
- Sodium Hydroxide: corrosive
- Hydrochloric Acid: corrosive
- Diethylpyrocarbonate: explosive, toxic substance

This product may also be used with radioactive materials. Please follow the manufacturer’s safety data sheet relating to the safe handling and use of these reagents.

2.2. Storage

Membranes should be stored in a clean, dry atmosphere away from excessive heat, light and noxious fumes. The membranes should be handled wearing gloves or using blunt ended forceps to prevent contamination.

2.3 Stability

When stored under appropriate conditions...
conditions membranes are stable for up to three years. Membranes should be kept in the bags in which they are received. Performance is consistent when stored under the recommended conditions.
3. Components

3.1. Main components

RPN82B
82 mm diam, 50 discs

RPN87B
87 mm diam, 50 discs

RPN132B
132 mm diam, 50 discs

RPN137B
137 mm diam, 50 discs

RPN1576B†
11.5 x 7.3 cm, 50 sheets†
Designed to fit Omni Tray from Nalge Nunc International

RPN119B
11.9 x 7.8 cm, 50 sheets

RPN225B
22.5 x 22.5 cm, 50 sheets

RPN1210B
12 x 10 cm, 20 sheets

RPN1510B
15 x 10 cm, 20 sheets

RPN1520B
15 x 20 cm, 10 sheets

RPN2020B
20 x 20 cm, 10 sheets

RPN2222B
22.2 x 22.2 cm, 10 sheets

RPN3050B
30 x 50 cm, 5 sheets

RPN2250B
22.2 x 22.2 cm, 50 sheets

RPN203B
20 cm x 3 m, 1 roll

RPN303B
30 cm x 3 m, 1 roll

RPN1782B
82 mm diam, 50 gridded discs

RPN1787B
87 mm diam, 50 gridded discs

RPN1732B
132 mm diam, 50 gridded discs

RPN1737B
137 mm diam, 50 gridded discs

3.2. Critical parameters

• Storage: Membranes should be stored in a clean, dry atmosphere away from excessive heat, light and noxious fumes.

• Handling: The membranes should be handled wearing gloves or
using blunt ended forceps to prevent contamination. All membranes should be cut using clean sharp scissors to avoid damage to the membrane edges.

- **Wettability:**
 The wettability of the membranes is important in achieving a consistent performance. Nylon membranes are hydrophilic and do not require pre-wetting before use in blotting procedures. Wetting is however advised for large blots (>100 cm²) or when multiple blots are hybridized together. Wet the membrane first in water then equilibrate in an appropriate buffer.

- **Fixation:**
 The fixation procedure can significantly affect the eventual sensitivity of a system. Sub optimal fixation reduces the amount of available target sequences, particularly following stripping. Nucleic acid may be fixed using heat or UV crosslinking. It is essential that fixation times, energy settings (where appropriate) and concentration (where appropriate) are optimized.

3.3. Other materials required

Equipment
- Agarose gel electrophoresis apparatus, for example HE33 Mini or HE99x Max submarine gel electrophoresis systems
- Microwave
- Hybond Blotting Paper
- Absorbent paper towels
- Trays/dishes
- Glass plates
- 750 g weight
- Pipettes, for example, Gilson™Pipetman™ P20, P200, P1000 and P5000
- Assorted laboratory glassware
- Oven, at 80°C or UV transilluminator
- Orbital shaker
- SaranWrap™ or similar cling film
4. Description

All Hybond™ membranes are identical on both sides.

There are two distinct manufacturing methods, resulting in membranes with different characteristics.

a. Unsupported, where the active substrate is cast as a pure sheet: Hybond ECL™. Due to their fragile nature, unsupported membranes should be handled with care.

b. Supported, where the active substrate is cast onto an inert ‘web’ or support. Hybond-C extra, Hybond-NX, Hybond-N and Hybond-N+ all fall into this class.

Supported nylon membranes have a high binding capacity for nucleic acid, in addition to high tensile strength. For applications requiring a high degree of sensitivity and/or reprobing these types of membranes are an ideal choice. Due to its high protein binding capacity, nylon requires extensive blocking prior to detection with antibodies to avoid high backgrounds. Consequently, nylon membranes are not recommended for use in Western blotting.

The membrane, which is identical on both sides, is manufactured in long rolls known as ‘master rolls’. Production runs are carefully controlled and constantly monitored to ensure the most consistent product reaches the user. Samples are taken from the beginning, middle and end of each master roll and used in single copy gene detection (see Quality Control below).

4.1. Quality control

Every lot of Hybond-N+ is tested using related GE Healthcare products and protocols to ensure maximum compatibility and optimum performance.

Description: Nylon hybridization transfer membrane
Application test:

Hind III restricted human genomic DNA, separated using neutral agarose gel electrophoresis, is Southern blotted onto Hybond-N+ and hybridized with N-ras proto-oncogene probe.

Specifications:

Detection of 0.5 pg of target DNA. Hybridization volume 125 µl/cm².

Labelling and detection:

Performed using the appropriate system:

Megaprime™ random prime labelling kit with Redivue™ [α-32P]-dCTP label, radioactive signal detected using Hyperfilm™MP

Storage:

Store in a clean dry environment.

4.2. Solutions

All reagents should be of AnalaR™ grade where possible.

10x nucleic acid loading dye mix

40 mg Bromophenol blue
40 mg Xylene cyanol
2.5 g Ficoll™ 400
Add approximately 8 ml of distilled water. Mix to dissolve. Make up to a final volume of 10 ml. Store at room temperature for up to 3 months.

50x TAE (DNA electrophoresis buffer)

242 g Trizma™ base
18.6 g Ethylenediaminetetraacetic acid (EDTA), sodium salt
Add approximately 800 ml of distilled water. Mix to dissolve.
50x TAE (DNA electrophoresis buffer) continued

Adjust to pH 8 with glacial acetic acid (~57 ml/l). Make up to a final volume of 1000 ml. Store at room temperature for up to 3 months.

Depurination solution

11 ml HCl
989 ml Distilled water
Mix. Store at room temperature for up to 1 month.

Denaturation buffer

87.66 g NaCl
20 g NaOH
Add approximately 800 ml of distilled water. Mix to dissolve. Make up to a final volume of 1000 ml. Store at room temperature for up to 3 months.

Neutralization buffer

87.66 g NaCl
60.5 g Trizma base
Add approximately 800 ml of distilled water. Mix to dissolve. Adjust to pH 7.5 with concentrated hydrochloric acid. Make up to a final volume of 1000 ml. Store at room temperature for up to 3 months.

Nucleic acid transfer buffer (20x SSC)

88.23 g Tri-sodium citrate
175.32 g NaCl
Add approximately 800 ml of
Nucleic acid transfer buffer (20x SSC) continued
distilled water. Mix to dissolve. Check the pH is 7–8. Make up to a final volume of 1000 ml. Store at room temperature for up to 3 months.

TE buffer
1.21 g Trizma base
0.372 g EDTA, sodium salt
Add approximately 800 ml of distilled water. Mix to dissolve. Adjust to pH 8 with concentrated hydrochloric acid. Make up to a final volume of 1000 ml. Store at room temperature for up to 3 months.

10x MOPS buffer
41.2 g 3-(N-morpholino)propanesulfonic acid (MOPS)
10.9 g Sodium Acetate, 3-hydrate
3.7 g EDTA, sodium salt
Add approximately 800 ml of nuclease free distilled water. Mix to dissolve. Adjust to pH 7 with NaOH (prepared in nuclease free distilled water). Make up to a final volume of 1000 ml. Filter sterilize. Store at room temperature protected from light. Do not use if the solution appears yellow in color.

100x Denhardt's solution
2.0 g Bovine serum albumin
100x Denhardt’s solution continued

2.0 g Ficoll 400
2.0 g Polyvinylpyrrolidone
Add approximately 50 ml of distilled water. Mix to dissolve. Make up to a final volume of 100 ml. Store at -15°C to -30°C for up to 3 months.
5. Protocols

This pack leaflet is limited to the classical capillary blotting technique (5.1–5.4) used for the transfer of separated nucleic acid fragments from an agarose gel to a solid support, and is representative of the procedures used in GE Healthcare laboratories.

Details of the gel treatments required before the transfer of DNA or RNA may be found on pages 12–16. Figure 1 (page 15) is a diagrammatic representation of the transfer apparatus used in this technique.

5.1. Protocol for capillary blotting

Protocol

5.1.1. Prepare the gel for transfer.

5.1.2. Cut a sheet of membrane to an appropriate size.

5.1.3. Half fill a tray or glass dish of a suitable size with the transfer buffer. Make a platform and cover with a wick made from three sheets of Hybond Blotting paper saturated in transfer buffer.

5.1.4. Place the treated gel on the wick platform. Avoid trapping any air bubbles between the gel and the wick. Surround the gel with cling film to prevent the transfer of nucleic acid to the membrane. They may be removed at any stage by rolling a clean pipette or glass rod.

Notes

5.1.1. Details of gel treatments may be found on page 16–17, Southern blotting or page 17–19, Northern blotting.

5.1.2. The membrane should be cut with clean scissors.

5.1.3. At least 800 ml of buffer is required for a 20 x 20 cm gel and a dish 24 x 24 cm. Ensure the wick ends are immersed in the transfer buffer.

5.1.4. Air bubbles block the transfer of nucleic acid to the membrane.
Protocol

5.1.5. Place the membrane on top of the gel. Avoid trapping any air bubbles.

5.1.6. Place three sheets of Hybond Blotting paper cut to size and saturated in transfer buffer, on top of the membrane. Avoid trapping any air bubbles.

5.1.7. Place a stack of absorbent towels on top of the Hybond Blotting paper at least 5 cm high.

5.1.8. Finally, place a glass plate and a weight on top of the paper stack. Allow the transfer to proceed overnight. The weight should not exceed 750 g for a 20 x 20 cm gel.

5.1.9. After blotting, carefully dismantle the transfer apparatus. Before separating the gel and membrane, mark the membrane to allow identification of the tracks with a pencil or chinagraph pen.

Notes

5.1.5. Do not attempt to move the membrane once it has touched the gel surface.

5.1.8. Small fragments (0.5–1.5 Kb) are rapidly transferred upwards in a few hours, larger fragments (>10 Kb) require at least overnight transfer. The efficiency of transfer of these larger fragments can be improved by depurination.

5.1.9. Rinsing the membrane following transfer is not advised. Extensive experimentation at GE Healthcare has shown that rinsing the membrane before fixation produces blots of variable quality because
Protocol

5.1.10. Fix the nucleic acid to the membrane by baking at 80°C for 2 hours or by using an optimized UV crosslinking procedure. nucleic acid is removed from the membrane during this step.

5.1.11. Blots may be used immediately. Blots must be thoroughly dried if storage is required. Blots may be rinsed in 2 x SSC before storage or hybridization. Blots should be stored wrapped in SaranWrap desiccated at room temperature under vacuum.

Notes

5.1.10. Details of an optimization procedure are given on page 36. The (UVC 500 crosslinker, available from GE Healthcare, has a pre-set UV exposure (70 000 micro-joules/cm²) which is suitable for Hybond-N+.

Fig 1. Diagrammatic representation of a capillary blotting apparatus.
5.2 Southern blotting – Neutral transfer gel treatment protocol

Protocol

5.2.1. Separate the DNA samples on a suitable neutral agarose gel.

5.2.2. Following electrophoresis visualize the DNA samples in the gel with UV light and photograph.

5.2.3. Process the gel for blotting, between each step rinse the gel in distilled water.

5.2.3a. Depurination Place in 0.125 M HCl so that the gel is completely covered in the solution. Agitate gently for approximately 10 minutes. During this time the bromophenol blue dye present in the samples will change color.

Notes

5.2.1. Efficient separation of a range of DNA fragments may be achieved by varying the type and concentration of the agarose in the gel. Ensure the optimum DNA concentration for detection is loaded into each track. 0.1 µg/ml Ethidium Bromide should be included in the gel for visualization.

5.2.2. Minimize the exposure of the gel to UV light as this may cause excessive nicking of the nucleic acid.

5.2.3a. Depurination is not required for DNA fragments <10 Kb in size. Do not over depurinate, 10 minutes (or until the bromophenol blue turns yellow) is usually sufficient for most samples.
Protocol

5.2.3b. Denaturation
Submerge the gel in sufficient denaturation buffer. Incubate for 30 minutes with gentle agitation. During this time the bromophenol blue dye will return to its original color.

5.2.3c. Neutralization
Place the gel in sufficient neutralization buffer to submerge the gel. Incubate for 30 minutes with gentle agitation.

5.2.4. Set up the capillary blot as described on page 13.

5.3. Northern blotting – gel preparation and treatment
RNA is separated under denaturing conditions, the principle systems currently in use are the glyoxal/dimethylsulphoxide and the formaldehyde/formamide procedures. This booklet restricts itself to the latter. Successful Northern analyses (7,8) depends on the quality of the reagents used as well as having pure undegraded RNA samples.

Avoid any contamination with RNases, use sterile disposable plastics wherever possible. Glassware may be treated by baking at 180°C overnight or incubating in 0.2%(v/v) diethylpyrocarbonate (DEPC) followed by autoclaving or baking. Some plastics are also suitable for DEPC treatment.
Protocol

5.3.1. Prepare the MOPS/formaldehyde gel as follows:
Preheat 17.5 ml of formaldehyde and 30 ml 10 x MOPS buffer at 55°C.
Dissolve 3–4.5 g of agarose in 250 ml of nuclease free water. Cool to 55°C. Add the 10 x MOPS buffer and formaldehyde. Cast the gel in an appropriate enclosure and allow the gel to set.

5.3.2. Prepare the RNA sample(s), using the table below:

<table>
<thead>
<tr>
<th>Volume final</th>
<th>conc</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>V</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>5.5</td>
</tr>
<tr>
<td>Formamide</td>
<td>15</td>
</tr>
<tr>
<td>10x MOPS buffer</td>
<td>1.5</td>
</tr>
<tr>
<td>Water</td>
<td>8-V</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30</td>
</tr>
</tbody>
</table>

Place the sample(s) at 55°C for 15 minutes to denature. After denaturation add 3 µl of 10 x

Notes

5.3.1. The agarose gel is 0.7 M with respect to formaldehyde and I x with respect to the MOPS buffer. This formulation can be scaled up or down as appropriate for the size of gel required.
SybrGreen™ or Ethidium Bromide (0.01 µg/ml) may be included in the gel for visualization. RNA does not stain as well as the same amount of DNA with Ethidium Bromide. Excessive amounts of Ethidium Bromide will also inhibit RNA transfer.

5.3.2. Sample must be deproteinized. Samples may be stored at -15°C to -30°C for short periods. Nucleic acid loading buffer must be prepared using RNase free reagents/solutions.
5.3.3. Separate the RNA samples using 1 x MOPS buffer as the electrophoresis buffer.

5.3.4. Following electrophoresis, if appropriate, visualize the RNA within the gel with UV light and photograph.

5.3.5. Place the gel in a suitable tray or dish and cover with distilled water. Incubate the gel with gentle agitation for 15 minutes.

5.3.6. Discard the water and replace with sterile 10 x SSC. Agitate for 15 minutes. Repeat this step once more.

5.3.7. Set up the capillary blot as described on page 10 using a neutral transfer buffer.

5.4. Colony and plaque lifts (10)

5.4.1. Plate out the cells or bacteriophage in the usual way. Incubate overnight at the
5.4.2. Pre-cool the petri-dishes for at least 30 minutes at 2–8°C before taking the lift.

5.4.3. Select the correct size of membrane disc.

5.4.4. Bend the membrane and place the resulting trough across the centre of the petri-dish. Release the trough and allow the membrane to sit on the surface. Mark the disc position on the plate at several positions using a pin to ensure

Notes
200 per 83 mm plate is optimal for accurate selection of positive clones.

5.4.2. Pre-cooling prevents smearing of the colonies and separation of the top agar layer. Plates must be free of excess moisture.

5.4.3. The hydrophilic nature of nylon ensures accurate colony/plaque lifts. If desired the membrane may be pre-wet before use, for example on an unused agar plate or on a TE buffer saturated Hybond Blotting paper pad. Excess liquid must be removed from the membrane before proceeding, this is achieved by placing the disc on a dry sheet of Hybond Blotting paper, see page 13.

5.4.4. This procedure will prevent air being trapped under the membrane. Do not force the membrane down, as it unrolls, the membrane disc will flatten. Do not attempt to move the membrane disc once it has touched the agar surface.
Protocol

5.4.5. After 30–60 seconds remove the membrane from the petri-dish in one continuous movement using blunt ended forceps. Place colony/plaque side uppermost on a sheet of Hybond Blotting paper.

Notes

5.4.5. Extending the time the membrane remains on the surface of the agar will cause diffusion of the colonies/plaques. Replicate filters can be prepared by placing a fresh membrane disc on top of this template membrane. Press the membrane firmly together using a replica plating tool, avoid any lateral movement. Mark the replica membrane. Replica filters should then be incubated on fresh agar plates under appropriate conditions until colonies of 0.5–1 mm diameter are obtained.

5.4.6. The DNA must be liberated from the bacteria or bacteriophage, denatured and then fixed to the membrane following a neutralization step. This is achieved by placing the membrane discs colony/plaque uppermost on a series of Hybond Blotting paper.

5.4.6. An initial (optional) lysis step, 10% (w/v) SDS for 1-3 minutes may be included in the colony lift procedure. The Hybond Blotting paper should be moist, though not too wet as this will cause diffusion of the colonies/plaques. Timings
5.4.7. Finally, vigorously wash the membrane disc in 2x SSC to remove the proteinous debris.

5.4.8. Transfer the disc, DNA side Hybond Blotting paper, air dry.

5.4.9. Fix the DNA to the membrane by baking for 2 hours at 80°C or by using an optimized UV crosslinking procedure.

5.4.10. Membranes may be

Notes
should be optimized, prolonged incubations will cause diffusion of the target DNA making accurate selection of positive clones difficult. Avoid fluid reaching the upper surface of the membrane. When transferring membrane, remove as much fluid as possible from the underside of the membrane. This may be achieved by transferring briefly to dry Hybond Blotting paper between treatments.

5.4.7. Adequate removal of cell debris from colony lifts is essential.

5.4.8. Transfer the disc, DNA side Hybond Blotting paper, air dry.

5.4.9. Fix the DNA to the membrane by baking for 2 hours at 80°C or by using an optimized UV crosslinking procedure.

5.4.10. Membranes may be

Notes
should be optimized, prolonged incubations will cause diffusion of the target DNA making accurate selection of positive clones difficult. Avoid fluid reaching the upper surface of the membrane. When transferring membrane, remove as much fluid as possible from the underside of the membrane. This may be achieved by transferring briefly to dry Hybond Blotting paper between treatments.

5.4.7. Adequate removal of cell debris from colony lifts is essential.
5.5. Protocol for dot blotting (manual)
The following is a general protocol for dot blotting target nucleic acids. A number of commercially available devices are also available, for example the PR648 Slot blot manifold available from GE Healthcare. These provide for a more consistent and even application of the sample than the manual procedure described below. This parameter is particularly important in those experiments requiring quantification.

Protocol

5.5.1. Cut the membrane to an appropriate size.

5.6.2. Using a pencil, mark the membrane lightly with a grid or dots to guide subsequent sample application. There should be a minimum distance of 1 cm between samples applied in a volume 5 µl or less.

5.5.3. Pre-wetting the membrane is not required.

5.5.4. Dilute the samples in an appropriate buffer to the required concentration. TE buffer or 2x SSC may be used for DNA samples. RNA samples

Notes

5.5.1. The membrane should be cut with clean scissors.

5.5.3. Membranes may be pre-wet if desired, see critical parameters page 6.

5.5.4. Carrier substance may be included in the diluent buffer to improve retention of very small amounts of target on the membrane. These include:

- stored wrapped in SaranWrap
- desiccated at room temperature under vacuum.
Protocol

should be prepared using the information on pages 17–19. A sample size of 1–2 µl is ideal for manual dot blotting.

5.5.5. Nucleic acid samples must be denatured to provide a suitable single-stranded target molecule for subsequent hybridizations. Denature the samples by heating in a boiling water bath for 5 minutes. Chill rapidly on ice, then centrifuge briefly to collect sample at the bottom of the tube.

5.5.6. Carefully apply the sample to the membrane, avoiding touching the membrane with the pipette tip. Leave the membrane to air dry.

5.5.7. Fix the nucleic acid sample to the membrane by UV

Notes

• sonicated herring sperm DNA for DNA samples
• tRNA for use with RNA samples.

Larger sample volumes of 50–200 µl are common for commercial apparatus. This ensures an even application of the sample over the whole dot or slot.

5.5.5. RNA samples may be preheated to 55°C for 15 minutes, see page 18.

5.5.6. If the sample volume is greater than 2 µl, then apply in successive 2 µl aliquots to the same position on the membrane, allow the aliquot to dry between each application. This will prevent the sample spreading.

5.5.7. Details of an optimization procedure are given on page
Protocol

5.5.8. Blots may be used immediately or stored wrapped in SaranWrap desiccated at room temperature under vacuum.

5.6. Hybridizations in bags and boxes (5,6)

Protocol

5.6.1. Prepare the hybridization buffer, for example

Denhardt’s buffer
5 x SSC
5 x Denhardt’s solution
0.5% (w/v) SDS

Modified Church and Gilbert buffer
7% (w/v) SDS

Notes

32. The UVC 500 UV crosslinker, available from GE Healthcare, has a pre-set UV exposure (70 000 micro-jaules/cm²) which is optimum for Hybond-N+.

5.6.1. There are a wide variety of hybridization buffers used by researchers. This Denhardt’s based buffer is used in the testing of Hybond nylon membranes. A reduced concentration of SDS has been found to elevate backgrounds following hybridisation. The Denhardt’s hybridization buffer may be stored at -15°C to -30°C if required.

This modification of the Church and Gilbert buffer, is routinely used in GE Healthcare.

Notes

32. The UVC 500 UV crosslinker, available from GE Healthcare, has a pre-set UV exposure (70 000 micro-jaules/cm²) which is optimum for Hybond-N+.
Protocol

- 0.5 M phosphate buffer, pH 7.2
- 10 mM EDTA

5.6.2. Prepare the radiolabelled probe using the appropriate procedure.

5.6.3. Preheat the required volume of hybridization buffer to the appropriate temperature.

Notes

laboratories. It has been shown to be suitable for Southern, Northern, dot blots and library screening applications. The hybridization buffer may be stored at room temperature. Ensure the SDS is fully dissolved before use. This may be achieved with gentle heating.

5.6.2. For radioactive applications use a probe concentration of 0.5–2 x 10⁶ incorporated counts per ml of hybridization buffer for single copy gene detection, i.e. high sensitivity application or 0.125–0.5 x 10⁶ incorporated counts per ml of hybridization buffer for high target work, for example colonies/plaques, PCR products etc. Probe purification, to remove unincorporated radioactive nucleotides, is strongly recommended.

5.6.3. Pre-wetting in a suitable buffer is essential for large blots (>100cm²) or multiple blots. Details of the pre-wetting procedures are given on page 4, critical parameters.
Protocol

5.6.4. Pre-wet the blot in a suitable buffer for example 5 x SSC or 0.5 M phosphate buffer. Place the blot(s) in the hybridization buffer. 125 µl of hybridization buffer per cm² is a suitable volume. Prehybridize for at least 30 minutes with constant agitation, at the desired hybridization temperature (see step 7).

5.6.5. When using labelled double stranded probes, pipette the required amount into a clean microcentrifuge tube. If the volume is less than 20 µl, make up to this volume with water or TE buffer. Denature the probe by boiling for 5 minutes and snap cool on ice. Briefly centrifuge to draw the contents to the bottom of the tube.

Notes

Hybridization may be carried out in bags, or boxes, provided there is sufficient buffer for the container. Adequate circulation of the buffer is essential. When hybridizing several blots together, the blot should move freely within the buffer.
Protocol

5.6.6. Add the probe to the pre-hybridization buffer.

5.6.7. Hybridize overnight with gentle agitation at the required temperature.

5.6.8. Prepare the stringency wash solutions. The wash solution should be used in excess, at least 1-5 ml/cm² of membrane.

Notes

5.6.6. Avoid placing the probe directly on the blots, as this will cause excessive background.

5.6.7. Hybridization temperatures may vary with the probe. Lower temperatures achieve lower stringency. The temperature of hybridization used will depend on the degree of homology between the probe and the target. 65-68°C is suitable for most long probes (>100 bases). With short/oligo probes (<50 bases) hybridization temperature are usually defined as Tm-5°C.

\[\text{Tm (melting temperature) = (4 \times \text{number of G+C bases}) + (2 \times \text{number of A+T bases})} \]

Hybridization time can also vary. Short hybridization times may be suitable for high target applications.

5.6.8. Stringency washes will depend on the nature of the probe and target to be hybridized. Salt concentration and temperature should be taken into consideration. The lower the salt concentration,
5.6.9. After the hybridization, wash the blots by incubating twice, 5 minutes each, in 2 x SSC, 0.1% SDS, followed by 1 x SSC, 0.1% SDS for 15 minutes, and finally 0.1 x SSC, 0.1% SDS for 2 x 10 minutes, at the

Protocol

Low stringency wash:
2 x SSC, 0.1% (w/v) SDS

Medium stringency wash:
1 x SSC, 0.1% (w/v) SDS

High stringency wash:
1 x SSC, 0.1% (w/v) SDS

Notes

the greater the stringency. The higher the washing temperature, the greater the stringency.

Most commonly, stringency washes proceed from 'high salt/low temperature', for example 5 x SSC, 0.1% SDS at room temperature, to 'low salt/high temperature', for example 0.1 x SSC, 0.1% at 65°C (nominal hybridization temperature). Some procedures include room temperature washes under low stringency conditions. Do not allow the SDS to come out of solution during these washes, significant levels of background may result. Adequate circulation of the stringency buffer is essential when washing. Washing in boxes is advised.
5.7. Hybridization in tubes

There are numerous commercially available rotisserie devices suitable for use as hybridization ovens (for example GE Healthcare hybridization oven/shaker RPN2510E/251E). These can accommodate 2–7 tubes. The major advantage of this approach to hybridization is the use of low volumes of hybridization buffer, and therefore minimal probe volumes. This is achieved because fluid is able to move continually over the membrane.

Protocol

5.7.1. Prepare the hybridization buffer, for example:

Notes

5.7.1. There are a wide variety of hybridization buffers used by researchers. This Denhardt's based buffer is used in the quality control of all Hybond nylon membranes. A reduced concentration of SDS has been found to elevate backgrounds following hybridization. The Denhardt's hybridization
Protocol

Denhardt's buffer
5 x SSC
5 x Denhardt's solution
0.5% (w/v) SDS

Modified Church and Gilbert buffer
0.5 M phosphate buffer, pH 7.2
7% (w/v) SDS
10 mM EDTA

5.7.2. Prepare the radiolabelled probe using the appropriate procedure.

5.7.3. Preheat the required volume of hybridization buffer to an appropriate temperature.

5.7.4. Pre-wet the blot in a suitable dish, first in water then in an appropriate buffer. Ensure that the nucleic acid side is uppermost. Roll the blot along its length in such a way as to minimize overlap in the tube. Place inside the hybridization buffer.

Notes

buffer may be stored at -15°C to -30°C if required.

This modification of the Church and Gilbert buffer, is routinely used in GE Healthcare Laboratories. It has been shown to be suitable for Southern, Northern, dot blots and library screening applications. The hybridization buffer may be stored at room temperature. Ensure the SDS is fully dissolved before use. This may be achieved with gentle heating.

5.7.3. High backgrounds will result if sub optimum volumes are used for the membrane and hybridization conditions.

5.7.4. If there is significant overlap of the blot use of a nylon mesh should be considered. The mesh achieves separation of the blot layers allowing better probe access to these areas. It is strongly advised that hybridization
Protocol

5.7.5. Add a small volume of appropriate buffer to the hybridization tube, cap the tube. Unroll the blot by rotating the tube in the opposite direction to the ‘rolled’ blot.

5.7.6. Drain the tube of excess liquid and replace with the appropriate volume of hybridization buffer.

5.7.7. Prehybridize for 30 minutes at the appropriate temperature. Ensure that the tube is placed in the correct orientation within the oven to avoid ‘rolling’ up of the blot.

5.7.8. When using labelled double stranded probes, pipette volume should be increased (70–125 µl/cm²).

Notes

5.7.5. It is important not to allow air to become trapped between the inner surface of the tube and the membrane. This can cause areas of no signal or background following hybridization.

5.7.6. High backgrounds will result if sub-optimum volumes are used for the membrane and hybridization conditions.

5.7.8. For radioactive applications, use a probe
Protocol
the required amount into a clean microcentrifuge tube. If the volume is less than 20 µl, make up to this volume with water or TE buffer. Denature the probe by boiling for 5 minutes and snap cool on ice. Briefly centrifuge to draw the contents to the bottom of the tube.

5.7.9. Add the probe to the pre-hybridization buffer.

5.7.10. Hybridize overnight at the required hybridization temperature.
Prepare the stringency wash solutions. The wash solution should be used in excess. Use a volume that occupies 33–50% of the tube.

Notes
concentration of 0.5–2 x 10^6 incorporated counts per ml of hybridization buffer for single copy gene detection, i.e. high sensitivity application or 0.125–0.5 x 10^6 incorporated counts per ml of hybridization buffer for high target work, for example colonies/plaques, PCR products etc. Probe purification, to remove unincorporated radioactive nucleotides, is strongly recommended.

5.7.9. Avoid placing the probe directly on the blot. Probe may be added to the hybridization while the tube is in a vertical position. If necessary probe may be mixed with a portion of the hybridization buffer and added to the tube in a larger volume.

5.7.10. Hybridization temperatures may vary with the probe. Lower temperatures achieve lower stringency. The temperature of hybridization used will depend on the degree of homology between the probe and the target.
Protocol

Low stringency wash:
2 x SSC, 0.1% (w/v) SDS

Medium stringency wash:
1 x SSC, 0.1% (w/v) SDS

High stringency wash:
0.1 x SSC, 0.1% (w/v) SDS

5.7.11. After the hybridization wash the blot as follows:

a) rinse briefly in 2 x SSC, 0.1% (w/v) SDS
b) wash twice, 5 minutes each in 2 x SSC, 0.1% (w/v) SDS
c) wash twice, 10 minutes each in 1 x SSC, 0.1% (w/v) SDS
d) wash four times, 5 minutes each in 0.1 x SSC, 0.1% (w/v) SDS

5.7.12. Remove the blot from the last stringency wash, drain and wrap in SaranWrap and expose to X-ray film, for example Hyperfilm MP. Keep the blot moist if it is to be reprobed.

Notes

65–68°C is suitable for most long probes (>100 bases). With short/oligo probes (<50 bases) hybridization temperature are usually defined as Tm - 5°C.

\[Tm = (4 \times \text{number of G+C bases}) + (2 \times \text{number of A+T bases}) \]

Hybridization time can also vary. Short hybridization times may be suitable for high target applications.

5.7.11. Washing in boxes is much more effective and is recommended if feasible. The inefficiency of washing in tubes may be overcome by increasing the number of stringency washes while maintaining the same total wash time.

5.7.12. The use of SaranWrap with 35S labelled probes will significantly increase exposure times. In this case the blot should be air dried before autoradiography, if reprobing is not required.
5.8. Stripping protocol - Hot SDS procedure

Protocol

5.8.1. Place the moist membrane in an appropriate sized tray.

5.8.2. Prepare a boiling solution of 0.1% (w/v) SDS, pour the solution onto the blot and allow to cool.

5.8.3. Rinse the blot briefly in 2 × SSC.

5.8.4. Check the removal of the probe using the appropriate procedure for the labelling and detection system used.

5.8.5. Hybridize overnight using the appropriate conditions.

Notes

5.8.2. This step may be repeated if the probe is particularly difficult to remove.
6. Additional information

6.1. Determination of the optimum UV crosslinking conditions using a UV transilluminator

Protocol

6.1.1. Produce five or six identical control blots, for example Lambda Hind III on the membrane of choice.

6.1.2. Protect the surface of the membrane by covering the transilluminator with SaranWrap. Expose each blot DNA side down on the transilluminator for a different length of time, for example 30 seconds to 5 minutes.

6.1.3. Hybridize all the blots

Notes

6.1.1. The type of blot should reflect the technique for which the calibration is being used.

6.1.2. The length of exposure required for optimum fixation will vary depending on the wavelength of the UV bulb and its age. The energy emitted from a UV bulb is reduced with use. Regular recalibration is advised if the apparatus is extensively used. This inconvenience may be overcome with the use of UV crosslinkers which are able to compensate for this effect, when used on the constant energy setting. A UV crosslinker with pre-set or manual energy and time settings is available from GE Healthcare (the UVC 500 UV crosslinker).
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>together with a suitably labelled probe.</td>
<td></td>
</tr>
<tr>
<td>6.1.4. Following autoradiography, the optimum UV exposure time will be indicated by selecting the blot showing the strongest signal.</td>
<td></td>
</tr>
</tbody>
</table>
6.2. Recommended applications for blotting membranes

Hybond membranes for binding nucleic acid

<table>
<thead>
<tr>
<th>Applications</th>
<th>Hybond-NX (nylon)</th>
<th>Hybond-XL (positively charged nylon)</th>
<th>Hybond-N+ (positively charged nylon)</th>
<th>Hybond-N (neutral nylon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern blotting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA fingerprinting</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Radioactive</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>ECL</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AlkPhos Direct</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gene Images’</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alkali blotting/fixation</td>
<td>--</td>
<td>+++</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Low volume hybridizations</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Rapid-hyb buffer</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Northern blotting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive detection</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Non-radioactive detection</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dot/slot blots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive detection</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Non-radioactive detection</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Colony/plaque lifts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive detection</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Non-radioactive detection</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Hybond membranes for binding protein

<table>
<thead>
<tr>
<th>Applications</th>
<th>Hybond-P</th>
<th>Hybond ECL</th>
<th>Hybond-C Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western blotting</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>ECL detection</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>ECL Plus detection</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Chromogenic detection</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Colloidal gold detection</td>
<td>++</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>ECF™ detection</td>
<td>+++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Radioactive detection</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Glycoprotein detection</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Reprobing Westerns</td>
<td>+++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Expression screening</td>
<td>+</td>
<td>-</td>
<td>+++</td>
</tr>
</tbody>
</table>

Key: Suitable = +, Recommended = ++, Highly recommended = +++
Not recommended = -, Unsuitable = --
7. References

8. Related products

DNA labelling kits
Megaprime DNA Labelling System dNTP 30 reactions RPN1604
AlkPhos Direct Labelling and Detection System with ECF RPN3692
Rediprime II DNA Labelling System 30 reactions RPN1633
Ready-To-Go™ You-Prime First-Strand Beads 27-9264-01
First-Strand cDNA Synthesis Kit 27-9261-01
Gene Images DNA Random-Prime Labelling Kit 30 reactions RPN3520
Gene Images 3’ Oligo Labelling Kit 30 reactions RPN5770

Nucleotides
Redivue formulation 32P- and 33P-labelled radionucleotides
Standard formulation 32P- and 33P-labelled radionucleotides

Additional products
Rapid-hyb Buffer 125 ml RPN1635
Rapid-hyb Buffer 500 ml RPN1636
Liquid Blocking Reagent 100ml RPN3601

Scanning instrumentation
Typhoon® 8600 Variable Mode Imager
Storm® Gel and Blot Imaging System
Contact your GE Healthcare representative for the most current information.
GE Healthcare offices:

GE Healthcare Bio-Sciences AB
Albygatan 30 75-364 Uppsala
Sweden

GE Healthcare Europe GmbH
Munzingenstrasse 4 D-79111 Freiburg
Germany

GE Healthcare UK Limited
Amersham Place Little Chalfont Buckinghamshire HP7 9NA UK

GE Healthcare Bio-Sciences Corp
800 Centennial Avenue P.O. Box 1327 Piscataway NJ 08855-1327 USA

GE Healthcare Bio-Sciences KK
Sanken Bldg. 3-25-1 Higashimurayama Shiyaku Tokyo 190-0073 Japan

GE Healthcare offices:

GE Healthcare regional contact numbers:

Asia Pacific
Tel: +65 6219 5638 Fax: +65 2261 5761
Australia
Tel: +61 3 9869 8989 Fax: +61 3 9869 7011

Austria
Tel: 01/56404-1619 Fax: 01/56404-1627
Belgium
Tel: 02 891 58 00 Fax: 02 891 58 16

Canada
Tel: 1 800 632 1111 Fax: 1 800 632 1112

Central, East, & South East Europe
Tel: +43 1 983 3826 Fax: +43 1 985 8327

Denmark
Tel: 45 16 2400 Fax: 45 16 2424

Finland & Baltics
Tel: +358-(0)9-512 39 40 Fax: +358 (0)9 512 39 439

France
Tel: 01 8532 6700 Fax: 01 8532 6701

Germany
Tel: 089 6205 620 Fax: 089 6205 621

Italy
Tel: 02 4168 2223 Fax: 02 4168 2224

Japan
Tel: +81 3 5331 9336 Fax: +81 3 5331 9370

Latin America
Tel: +55 11 3933 7300 Fax: +55 11 3933 7302

Middle East & Africa
Tel: +39 02 9601 6977 Fax: +39 02 9601 6978

Netherlands
Tel: 0800 6666625 Fax: 0800 6666632

Norway
Tel: 65 46 50 40 Fax: 65 46 46 01

Portugal
Tel: 21 417 3585 Fax: 21 417 3586

Russia & other C.I.S. & N.I.S
Tel: +7 (095) 232 0250 Fax: +7 (095) 230 6377

South East Asia
Tel: 60 3 8024 2080 Fax: 60 3 8024 2089

Spain
Tel: 93 507 62 00 Fax: 93 507 62 55

Sweden
Tel: 08 525 1801 Fax: 08 525 1818

Switzerland
Tel: 0848 8028 12 Fax: 0848 8028 13

UK
Tel: 0800 632 1111 Fax: 0800 632 1112

USA
Tel: +1 800 526 3593 Fax: +1 800 526 3591

imagination at work