Detection and mass spectrometry identification of protein changes in low-abundance tissue using CyDye DIGE Fluor saturation dyes

**Key words:**
Etan DIGE system • CyDye DIGE Fluor saturation dyes • laser capture microdissection • mass spectrometry

Traditional two-dimensional electrophoresis (2-DE) is a well-established technique for protein analysis, but its use in identifying changes in protein abundance in tissue samples has been limited by system variability and low sensitivity. These limitations have largely precluded its use to identify protein differences in scarce materials such as those recovered from laser-capture microdissection (LCM).

This study demonstrates the application of 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) to detect changes in protein abundance in samples recovered from LCM. The analysis uses novel fluorescent dyes, CyDye™ DIGE Fluor saturation dyes, to label the proteins and provide the sensitivity required for quantitation of minute protein abundance differences. Combined with an internal standard and using Etan™ DIGE system, proteins from the hippocampus of rats expressing human amyloid precursor protein (APP) were compared with those from normal animals. This work complements a more comprehensive study by Kondo *et al* (1).

**Introduction**

The variability between gels in traditional 2-DE makes it difficult to distinguish between system and induced biological change, which means that differences in protein expression can rarely be predicted with confidence. Moreover, the technique is not well-suited for the analysis of low-abundance proteins. Two-Dimensional Fluorescence Difference Gel Electrophoresis (2-D DIGE) offers significant benefits over the traditional method. In 2-D DIGE using Etan DIGE system, samples are prelabelled with one of the CyDye DIGE fluoros and can be multiplexed within the same gel along with an internal standard.

![Fig 1. Schematic representation of Etan DIGE system experimental workflow.](image)
To demonstrate the application of CyDye DIGE Fluor saturation dyes to the proteomic study of scarce, low-abundance samples, we chose the study of the neurodegenerative disorder Alzheimer’s disease (AD) as our model system. Based on normal and transgenic rats carrying the human APP gene, the system utilizes LCM to harvest a region from rat hippocampus enriched for the CA1 area for further analysis. Prior to electrophoresis, samples are differentially labelled with fluorescent, spectrally distinct CyDye DIGE Fluor saturation dyes then co-electrophoresed with an internal standard, in the same 2-D gel.

CyDye DIGE Fluor saturation dye molecules have molecular weights of approximately 680 and are matched in mass to give equivalent migration of the labelled proteins. The dyes react with all available cysteine residues in the protein sample, giving a high labelling concentration. Because they have a net zero charge, there is no charge alteration to the labelled protein due to the conjugation of the dye to cysteine thiol groups. CyDye DIGE Fluor saturation dyes enable visualization of scarce/limited amounts of sample (typically 5 µg of protein per labelling reaction), due to their high emission intensity and the sensitivity of the Typhoon™ 9400 Series Variable Mode Imager that is used for scanning the gels. CyDye DIGE Fluor saturation dyes are more sensitive than Coomassie™, silver, or Sypro™ dye staining methods, with a wider dynamic range.

The results highlight the suitability of this 2-D DIGE labelling technique for the analysis of extremely low amounts of complex samples and the interface to high-throughput protein identification employing MALDI-ToF mass spectrometry with database searching.

The Ettan design proteomics platform has also been extensively applied to the study of other model systems (2–4).

**Products used**

*Amersham Biosciences products used:*

- CyDye DIGE Fluor Labelling Kit for Scarce Samples
- CyDye DIGE Fluor Labelling Kit for Scarce Samples and Preparative Gel Labelling
- Pharmalyte pH 3–10
- PlusOne Dithiothreitol (DTT)
- Immobiline DryStrip pH 4–7, 18 cm,
- Immobiline DryStrip Reswelling Tray
- DeStreak Reagent
- Ettan IPGphor Manifold
- PlusOne Bind-Silane
- Ettan IPGphor IEF System
- Ettan DALTtweelve Large Vertical System
- DALT Gel Caster
- Low fluorescence glass plates with integral spacers for Ettan DALT
- Ettan DIGE Gel Alignment Guides for Ettan DALT
- Gel Orientation Guide
- Ettan Spot Picker
- Reference Markers
- Typhoon 9410 Variable Mode Imager
- DeCyder Differential Analysis Software, v5.0
- Ettan MALDI-ToF Pro

**Methods**

**Sample preparation**

Nine male, wild type rats (Fischer F344 strain) and nine male transgenic rats of the same strain carrying a human APP 751 isoform containing the “Swedish” double mutation under the control of an HMGCoA reductase promoter were selected when weighing 250–300 g (approximately three months old). Entire brains were removed and frozen in the vapor phase of liquid nitrogen (5, 6). To prepare samples for analytical 2-D gels, brains were mounted onto aluminum chucks with 2% w/v carboxymethylcellulose, and 30 µm-thick tissue sections were cut at −12 °C using a Brights cryostat and thaw-mounted onto membrane slides (Leica,
Sample labelling

To derive statistically valid data on differences between the wild type and transgenic rats, equal amounts (5 µg) of each wild type and transgenic protein sample were mixed and designated as the “pooled internal standard.” The standard sample was bulk labelled with CyDye DIGE Fluor Cy3 saturation dye in sufficient quantity to include a standard on every gel. Proteins (5 µg) from each wild type or transgenic rat were labelled separately with CyDye DIGE Fluor Cy5 saturation dye.

A 5 µg aliquot of each rat hippocampus CA1-enriched protein lysate was reduced with 2 nmol of TCEP for 1 h at 37 °C in the dark. Four nanomoles of each CyDye DIGE Fluor Cy5 saturation dye were dissolved in anhydrous dimethyl formamide and added to each sample (Fig 1). The labelling reaction was performed at 37 °C in the dark for 30 min. Equal volumes of 2× sample buffer containing 7 M urea, 2 M thiourea, and 4% (w/v) CHAPS to lyse the sample. Each sample in lysis buffer was transferred into the tube then placed on ice in an ultrasonic waterbath and sonicated on ice for 3 × 30 s intervals. Following sonication, the tubes were centrifuged using a benchtop microcentrifuge at 9000 × g for 30 s prior to collection of the final supernatant. To prepare samples for preparative 2-DE, hippocampi, dissected free-hand, were homogenized in ice-cold lysis buffer prior to sonication, as described above. The protein concentration of each lysate was determined using a detergent-compatible protein assay (Protein Determination Reagent, USB).

**Electrophoretic separation**

Prior to electrophoretic separation, labelled samples were mixed as described in Table 1. Each gel contained 5 µg of Cy3 labelled standard and 5 µg of an individual sample labelled with Cy5.

<table>
<thead>
<tr>
<th>Gel number</th>
<th>Sample labelled with</th>
<th>Sample labelled with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CyDye DIGE Fluor Cy3 saturation dye</td>
<td>CyDye DIGE Fluor Cy5 saturation dye</td>
</tr>
<tr>
<td>1–9</td>
<td>Pooled standard</td>
<td>Wild type</td>
</tr>
<tr>
<td>10–18</td>
<td>Pooled standard</td>
<td>Transgenic</td>
</tr>
</tbody>
</table>
Immobilene™ DryStrip gels, pH 4–7 (linear), 24 cm, were rehydrated in DeStreak™ Rehydration Solution containing 1% (v/v) Pharmalyte. The first-dimension separation, isoelectric focusing (IEF) using the cup-loading technique, was carried out on an Ettan IPGphor™ IEF System with Ettan IPGphor Manifold. The separation protocol consisted of five phases of graduated voltages from 300 to 8000 V with a total focusing of 50 000 Vh. Prior to second-dimension SDS-PAGE, strips were equilibrated in a single buffer containing 6 M urea, 2% (w/v) SDS, 30% (v/v) glycerol, 100 mM Tris, pH 8.0, reduced with 30 mM DTT. The strips were immediately applied to a 12.5% T SDS polyacrylamide gel, cast using DALT Gel Caster with low-fluorescence glass plates (26 × 20 cm) and 1-mm spacers. A 0.5% agarose overlay containing 0.001% bromophenol blue was applied. Second-dimension electrophoresis was carried out using Ettan DALT twelve Electrophoresis System. Initially, gels were run at 2 W/gel overnight, and the following morning the power was increased to 10 W/gel until the bromophenol blue dye front migrated off the bottom of the gel.

Imaging and analysis

Gel images for analysis were obtained using a Typhoon 9400 Series Variable Mode Imager, designed to optimally detect CyDye DIGE Fluor saturation dyes using the following settings: For Cy3, 532 nm excitation laser and 580 BP 30 emission filter; and for Cy5, 633 nm excitation laser and 670 BP 30 emission filter. The resulting images were processed using DeCyder Differential Analysis Software v5.0. The spots on the gel were co-detected automatically as 2-D DIGE image pairs, which intrinsically link a sample to its in-gel standard. Matching between gels was performed using the in-gel standard from each image pair. The experimental setup and relationship between samples was assigned in DeCyder Differential Analysis Software. Each Cy5 gel image was assigned an experimental condition as either wild type or transgenic, and all Cy3 images were assigned as the standard. The gel with the highest spot count was automatically assigned as the master gel. Student’s T-test was performed for every matched spot set, comparing the average and standard deviation of protein abundance for a given spot between the wild type and transgenic groups. The protein spots were filtered to include only proteins that demonstrated a significant change ($p \leq 0.0005$) in abundance.

Mass spectrometry and protein identification

For mass spectrometry analysis, preparative gels were run using a pool containing 250 µg each of wild type and transgenic rat lysates obtained from the whole hippocampus (500 µg total). The protein sample was reduced with 200 nmol of TCEP for 1 h at 37 °C in the dark. After reduction, 400 nmol of Cy3 CyDye DIGE Fluor saturation dye, freshly dissolved in anhydrous dimethyl formamide, was added to each sample. The labelling reaction was performed at 37 °C in the dark for 30 min. Prior to gel casting, two reference markers were attached to a glass plate treated with PlusOne™ Bind-Silane. Immobilene DryStrip gels (see Electrophoretic separation section) were used with in-gel rehydration, due to the higher protein load. When using the saturation labelling technique, all available protein was labelled, therefore prelabeling the sample with CyDye DIGE Fluor Cy3 saturation dye meant that poststaining was not necessary. The preparative gel image was automatically matched to the master gel image in the analytical gel match-set using DeCyder Differential Analysis Software. A spot-picking list was generated from DeCyder Differential Analysis Software and exported to Ettan Spot Picker. The gel spots were excised as 2 mm-diameter plugs and delivered into 96-well microplates.

In-gel digestion was performed after washing the gel plugs twice with 50 mM ammonium bicarbonate, then 50% (v/v) acetonitrile in 50 mM ammonium bicarbonate followed by 100% (v/v) acetonitrile for dehydration. Following overnight digestion with 500 µg of trypsin (Promega, USA) in 50 mM ammonium bicarbonate (pH 8.0) at room temperature, peptides were extracted using sequential steps of 1% (v/v) aqueous trifluoroacetic acid (TFA), followed by 50% (v/v) acetonitrile in 0.2% TFA. The peptides were then resuspended in 10 µl of 0.1% TFA before being cleaned using ZipTip™ pipette tips (Millipore). The tips were wet with three washes in 50% acetonitrile and equilibrated with three washes in 0.1% TFA, then the peptides were aspirated 10 times to ensure binding to the column. The column and peptides were washed three times in 0.1% TFA before being eluted in 3 µl of 50% acetonitrile/0.2% TFA.

Peptide-mass fingerprinting was performed using the Ettan MALDI-ToF Pro mass spectrometer. The procedure for protein identification with Ettan MALDI-ToF Pro is described elsewhere (7).
MALDI-generated mass spectra were internally calibrated using trypsin peaks. The peptide masses were searched against the National Center for Biotechnology Information nonredundant mammalian database (8) using ProFound™ (9) and confirmed using a Mascot™ search from Matrixscience (10) and the SwissProt™ database from MS-Fit (11). One missed cleavage per peptide was allowed, and an initial mass tolerance of 100 ppm was used in all searches. Partial oxidation for methionine was assumed.

**Results and discussion**

The experimental design outlined in Table 1 was applied to this study to enable accurate statistical analysis of protein abundance taking into account the biological variation between animals. The internal standard consisted of pooled aliquots of all the biological samples within the experiment. This ensured that the standard was representative of every protein within the experiment. Normalization between gels is therefore permitted by determination of the relative abundance of fluorescent signal between the internal standard across gels. Each sample can then be compared with its in-gel internal standard, thereby reducing gel-to-gel variation and increasing statistical confidence (12).

A set of gels, containing CyDye DIGE Fluor Cy3 saturation dye-labelled internal standard versus CyDye DIGE Fluor Cy5 saturation dye-labelled wild type or transgenic rat samples, was run using the experimental design outlined in Table 1. The gels were batch-processed using DeCyder Differential Analysis Software. The gel images labelled with Cy3 were classified as “Standard” while Cy5 gel images from gels 1–9 were classified as “Wild Type,” and Cy5 gel images from gels 10–18 were classified as “Transgenic.” The greatest number of features was detected on gel 7, thereby automatically designating gel 7 as the master gel (Fig 3).

*Fig 3.* DeCyder Differential Analysis Software output showing the master gel image with CyDye DIGE Fluor Cy3 saturation dye-labelled standard (above left) and CyDye DIGE Fluor Cy5 saturation dye-labelled wild type (above right). The magnified box regions are shown (below right), as well as 3-D plots in pink (below left).
Statistical analysis was performed on spots matched across all the gels. The average ratio (i.e., the degree of difference between the abundance of a protein in two different groups—wild type and transgenic) was automatically calculated and displayed. A Student's T-test value for each spot was also calculated to establish the statistical significance of the abundance differences between wild type and transgenic samples. The majority of spots showed small changes in protein abundance (less than 2.0-fold) between control and treated samples. However, differences showing a decrease of protein abundance over 4.0-fold were also detected in the transgenic rat CA1-enriched hippocampus region compared with wild type.

The data was filtered to include only protein spots that displayed a Student’s T-test value of $p < 0.0005$. In the transgenic samples compared with wild type, 61 spots displayed standardized volumes that increased by more than 10%, and 67 spots had volumes that decreased by more than 10%.

To confirm that mass spectrometry IDs could be generated from samples labelled with CyDye DIGE Fluor saturation dyes, 10 gel plugs covering a range of isoelectric points and molecular weights were picked from the preparative gel and excised for tryptic digestion. The proteins were identified from their peptide-mass fingerprint (PMF) after a database search (data shown in Table 2). Work on this model system is continuing, hence protein function substitutes for identification of individual proteins.

DeCyder Differential Analysis Software data and PMF for one of the cytoskeletal proteins is shown in more detail in Figure 4. Using DeCyder Differential Analysis Software, a significant decrease in abundance of this protein was detected in the transgenic CA1-enriched hippocampus samples relative to wild type (Students T-test $1.6 \times 10^{-5}$).

The proteins identified here are involved in normal cellular functions such as energy metabolism and synaptic function, as well as pathological events such as oxidative stress and protein degradation pathways, all processes known to be affected in the brains of patients with AD (13). Two of the proteins identified are concerned with metabolism of reactive oxygen species produced during normal oxidative metabolism. Oxidative stress resulting from the generation of such oxidants is a common feature in neurodegenerative diseases including AD (14), and the altered expression found in APP transgenics is consistent with this. Another protein identified is concerned with the cellular degradation of proteins, a system known to be affected in AD and that may give rise to the β-amyloid deposits characteristic of this disease. Programmed cell death has recently been suggested to play a role in AD and other neurodegenerative diseases, and several proteins are known to be induced by β-amyloid-mediated cell death. The finding of such proteins by proteomic analysis in this instance is therefore consistent with such changes (15).

### Table 2. Summary of results from a selection of spots selected based on data from DeCyder Differential Analysis Software. The proteins were subsequently identified from PMF spectra generated by Ettan MALDI-ToF Pro

<table>
<thead>
<tr>
<th>Protein No.</th>
<th>Protein Function</th>
<th>Avg. Ratio</th>
<th>T-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>3356</td>
<td>Metabolism</td>
<td>1.31</td>
<td>$2.7 \times 10^{-5}$</td>
</tr>
<tr>
<td>2947</td>
<td>Apoptosis-related</td>
<td>1.37</td>
<td>$4.5 \times 10^{-8}$</td>
</tr>
<tr>
<td>3504</td>
<td>Oxidative stress</td>
<td>1.26</td>
<td>$2.9 \times 10^{-5}$</td>
</tr>
<tr>
<td>3526</td>
<td>Oxidative stress</td>
<td>1.27</td>
<td>$1.9 \times 10^{-5}$</td>
</tr>
<tr>
<td>999</td>
<td>Protein metabolism</td>
<td>−1.15</td>
<td>$5.0 \times 10^{-5}$</td>
</tr>
<tr>
<td>3370</td>
<td>Synaptic activity</td>
<td>1.25</td>
<td>$3.9 \times 10^{-4}$</td>
</tr>
<tr>
<td>3804</td>
<td>Synaptic activity</td>
<td>1.16</td>
<td>$2.5 \times 10^{-4}$</td>
</tr>
<tr>
<td>1476</td>
<td>Cytoskeletal</td>
<td>−1.39</td>
<td>$1.6 \times 10^{-5}$</td>
</tr>
<tr>
<td>1492</td>
<td>Cytoskeletal</td>
<td>−1.49</td>
<td>$4.5 \times 10^{-7}$</td>
</tr>
<tr>
<td>1347</td>
<td>Synaptic activity</td>
<td>−1.44</td>
<td>$2.7 \times 10^{-4}$</td>
</tr>
</tbody>
</table>
Conclusions

Two-dimensional fluorescence difference Gel Electrophoresis (2-D DIGE) using CyDye DIGE Fluor saturation dyes has been applied to enable the proteomic study of small amounts of material. This study demonstrates the value of the CyDye DIGE Fluor saturation dyes and DeCyder Differential Analysis Software for the complete 2-D analysis and identification of protein differences from samples that are available in very limited amounts, for example LCM samples. Data showing the compatibility of samples labelled with CyDye DIGE Fluor saturation dyes with subsequent analysis by mass spectrometry have also been described.

Using this system, proteins potentially important in the development of neurodegenerative disease involving the human APP have been detected with a high level of statistical confidence. The use of DIGE in combination with LCM therefore allows proteomic studies on small samples to be achieved with relative ease and will allow analysis of other scarce samples in various fields.

Fig 4. DeCyder Differential Analysis Software statistical output (top) and Ettan MALDI-ToF Pro PMF spectrum (bottom) of protein 1476, which was successfully identified after database searching. DeCyder Differential Analysis Software statistical output shows the graph of standardized log abundance (y-axis) against the three groups (standard, wild type, and transgenic [x-axis]) for protein 1476. The graphical data clearly indicates that the abundance of this protein is reduced in the transgenic samples (red circles) relative to wild type (blue circles). The thick blue line represents the average standardized log abundance value across the three groups.
References


11. http://protein.ucsf.edu/ucsfhtml4.0/msfit.htm


Acknowledgements

This application note is based on work performed in collaboration with Dr. Chris Morris and Kate Wilson, MRC-University of Newcastle upon Tyne Centre for Development in Clinical Brain Ageing Newcastle, UK.

For more information www.ettandige.com

Produced by Wikströms, Sweden 1031064, 10.2003
Printed matter. Licence 341 051

Cy, CyDye, DeCyder, DeStreak, Ettan, Immobiline, IPGphor, Pharmalyte, PlusDine, and Typhoon are trademarks of Amersham Biosciences Limited. Amersham and Amersham Biosciences are trademarks of Amersham plc. Coomassie is a trademark of ICN plc. Mascalt is a trademark of Matrixscience. Sypro is a trademark of Molecular Probes Inc. ZipTip is a trademark of Millipore Corp. SwissProt is a trademark of the Swiss Institute of Bioinformatics. ProFind is a trademark of ProteomeOnline. 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) technology is covered by US patent numbers US6,043,025 and US6,127,134 and foreign equivalents and exclusively licensed to Amersham Biosciences. CyDye: this product or portions thereof is manufactured under license from Carnegie Mellon University under patent number 5268486 and other patents pending. Some of these products may only be available to collaborators and customers within certain of our technology access programs. The purchase of CyDye DIGE Fluor dyes includes a limited license to use the CyDye Fluor dyes for internal research and development, but not for any commercial purposes. A license to use the CyDye Fluor dyes for commercial purposes is subject to a separate license agreement with Amersham Biosciences. Amersham Biosciences AB Björdgatan 30, SE-751 84 Uppsala, Sweden. Amersham Biosciences UK limited Amersham Place, Little Chalfont, Buckinghamshire HP7 9NA, England. Amersham Biosciences Corporation ROO Centennial Avenue, PO Box 1327, Piscatway, NJ 08855 USA. Amersham Biosciences Europe GmbH Münzinger Strasse 9, D-79111 Freiburg, Germany. Amersham Biosciences KK Sanken Building, 3-25-1, Hyakuinmicho, Shinjuku-ku, Tokyo 169-0073, Japan. All goods and services are sold subject to the terms and conditions of sale of the company within the Amersham Biosciences group that supplies them. A copy of these terms and conditions is available on request. © Amersham Biosciences AB 2003 – All rights reserved.

References


11. http://protein.ucsf.edu/ucsfhtml4.0/msfit.htm


